'Agegap' Formation hazard

February 27, 2017

The hazard used for the formation and dissolution events (between persons i and j) has the following form:

$$
\begin{aligned}
h & =\exp \left(\alpha_{0}+\alpha_{1} P_{i}+\alpha_{2} P_{j}+\alpha_{3}\left|P_{i}-P_{j}\right|\right. \\
& +\alpha_{4}\left(\frac{A_{i}(t)+A_{j}(t)}{2}\right) \\
& +\alpha_{5}\left|A_{i}(t)-A_{j}(t)-D_{p, i}-\alpha_{8} A_{i}(t)\right| \\
& +\alpha_{9}\left|A_{i}(t)-A_{j}(t)-D_{p, j}-\alpha_{10} A_{j}(t)\right| \\
& \left.+\beta t_{\text {diff }}\right)
\end{aligned}
$$

The properties used are:

- α_{k}, β : Constants
- P_{i}, P_{j} : Number of partners of these persons
- A_{i}, A_{j} : Age
- $D_{p, i}, D_{p, j}$: Preferred age difference for persons i and j
- $t_{\text {diff }}$: Time since relationship became possible between these two persons

Here, both the age and $t_{d i f f}$ contain a time dependency as follows:

$$
\begin{gathered}
A_{i}(t)=t-t_{B, i} \\
t_{d i f f}=t-t_{r}
\end{gathered}
$$

where

- $t_{B, i}$: Time at which person i was born
- t_{r} : Time at which relationship became possible between these two persons

This hazard can be rewritten as follows, where the time dependency is now explicitly shown:

$$
h=\exp \left(B+\alpha_{4} t+\beta t+\alpha_{5}\left|C-\alpha_{8} t\right|+\alpha_{9}\left|D-\alpha_{10} t\right|\right)
$$

In this expression, B, C and D are no longer time dependent:

$$
\begin{gathered}
B=\alpha_{0}+\alpha_{1} P_{i}+\alpha_{2} P_{j}+\alpha_{3}\left|P_{i}-P_{j}\right|-\alpha_{4}\left(\frac{t_{B, i}+t_{B, j}}{2}\right)-\beta t_{r} \\
C=\left(\alpha_{8}-1\right) t_{B, i}+t_{B, j}-D_{p, i} \\
D=\left(\alpha_{10}+1\right) t_{B, j}-t_{B, i}-D_{p, j}
\end{gathered}
$$

Because of the absolute values, there are four different situations we need to take into account:

1. $C>\alpha_{8} t$ and $D>\alpha_{10} t$

$$
h=\exp \left(B+\alpha_{5} C+\alpha_{9} D+t\left(\alpha_{4}+\beta-\alpha_{5} \alpha_{8}-\alpha_{9} \alpha_{10}\right)\right)
$$

2. $C>\alpha_{8} t$ and $D<\alpha_{10} t$

$$
h=\exp \left(B+\alpha_{5} C-\alpha_{9} D+t\left(\alpha_{4}+\beta-\alpha_{5} \alpha_{8}+\alpha_{9} \alpha_{10}\right)\right)
$$

3. $C<\alpha_{8} t$ and $D>\alpha_{10} t$

$$
h=\exp \left(B-\alpha_{5} C+\alpha_{9} D+t\left(\alpha_{4}+\beta+\alpha_{5} \alpha_{8}-\alpha_{9} \alpha_{10}\right)\right)
$$

4. $C<\alpha_{8} t$ and $D<\alpha_{10} t$

$$
h=\exp \left(B-\alpha_{5} C-\alpha_{9} D+t\left(\alpha_{4}+\beta+\alpha_{5} \alpha_{8}+\alpha_{9} \alpha_{10}\right)\right)
$$

For each of the cases the hazard is of the form

$$
\exp (E+t F)
$$

where in each of the cases:

1. $E=B+\alpha_{5} C+\alpha_{9} D \quad F=\alpha_{4}+\beta-\alpha_{5} \alpha_{8}-\alpha_{9} \alpha_{10}$
2. $E=B+\alpha_{5} C-\alpha_{9} D \quad F=\alpha_{4}+\beta-\alpha_{5} \alpha_{8}+\alpha_{9} \alpha_{10}$
3. $E=B-\alpha_{5} C+\alpha_{9} D \quad F=\alpha_{4}+\beta+\alpha_{5} \alpha_{8}-\alpha_{9} \alpha_{10}$
4. $E=B-\alpha_{5} C-\alpha_{9} D \quad F=\alpha_{4}+\beta+\alpha_{5} \alpha_{8}+\alpha_{9} \alpha_{10}$

The relevant integral for a hazard of this form is

$$
\Delta T=\int_{t_{0}}^{t_{0}+\Delta t} \exp (E+F t) d t
$$

which has the analytical solution

$$
\Delta T=\frac{\exp \left(E+F t_{0}\right)}{F}(\exp (F \Delta t)-1)
$$

and inverse

$$
\Delta t=\frac{1}{F} \ln \left[\frac{F \Delta t}{\exp \left(E+F t_{0}\right)}+1\right]
$$

However, because of the absolute values in the integral, there are in general two times at which a sign inside an absolute value changes: one is when $C=\alpha_{8} t$, the other when $D=\alpha_{10} t$. Calling the earliest of these times t_{1}^{P} and the other one t_{2}^{P}, the mapping from Δt to ΔT could require three different forms of the hazard:

$$
\Delta T=\int_{t_{0}}^{t_{0}+\Delta t} h(t) d t=\int_{t_{0}}^{t_{1}^{P}} h_{1}(t) d t+\int_{t_{1}^{P}}^{t_{2}^{P}} h_{2}(t) d t+\int_{t_{2}^{P}}^{t_{0}+\Delta t} h_{3}(t) d t
$$

Depending on the precise value of Δt, it could also be simpler than this.

Calculating ΔT from Δt is the most straightforward part, since the relative position of $t_{0}+\Delta t$ with respect to t_{1}^{P} and t_{2}^{P} is known. When starting from ΔT and solving for Δt this is no longer the case.

To solve for Δt, we first need to calculate

$$
\Delta T_{1}^{P}=\int_{t_{0}}^{t_{1}^{P}} h_{1}(t) d t
$$

If this value is larger than ΔT, we know that the value of $t_{0}+\Delta t$ must be smaller than t_{1}^{P} and we simply need to solve

$$
\Delta T=\int_{t_{0}}^{t_{0}+\Delta t} h_{1}(t) d t
$$

In the value is smaller than ΔT, we know that $t_{0}+\Delta t$ is larger than t_{1}^{P} and we need to calculate

$$
\Delta T_{2}^{P}=\int_{t_{1}^{P}}^{t_{2}^{P}} h_{2}(t) d t
$$

If ΔT is smaller than $\Delta T_{1}^{P}+\Delta T_{2}^{P}$, we know that the value of $t_{0}+\Delta t$ is smaller than t_{2}^{P} and we need to solve

$$
\Delta T-\Delta T_{1}^{P}=\int_{t_{1}^{P}}^{t_{0}+\Delta t} h_{2}(t) d t
$$

In the final case, if ΔT is larger than $\Delta T_{1}^{P}+\Delta T_{2}^{P}$, we need to solve

$$
\Delta T-\Delta T_{1}^{P}-\Delta T_{2}^{P}=\int_{t_{2}^{P}}^{t_{0}+\Delta t} h_{3}(t) d t
$$

